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Abstract. A study is made of the efficiency of an iterative procedure devised for solving a 
system of non-linear equations F ( x )  = 0, in which the choice of an iterative scheme randomly 
selected from a set of schemes is generally based on satisfying the criterion of a smaller 
norm IlFIl in the subsequent iteration. The practicality of using such a procedure is 
illustrated by solving a set of n = 5 equations. 

1. Introduction 

Many different methods (Ostrowski 1960, Ortega and Rheinboldt 1970, Blue 1980, 
Allgower and Georg 1980, Zirilli 1982, Dennis and Schnabell983) have been proposed 
for solving algebraic systems of equations. While those for solving linear systems are 
well established, the problem of solving non-linear systems is far less tractable. Many 
iterative methods are convergent only when the starting vector is close to a zero of the 
equations to be solved. For problems where the solutions are not known with any 
degree of accuracy, methods which extend the domain of convergence would be 
desirable and much effort has been expended in the past in this direction. In our 
recent paper (Tang and Kok 1985, hereafter referred to as TK), we presented a 
computational procedure which has the advantage of global convergence for solving 
non-linear algebraic systems of the general form 

F, (XI 3 x2, . . * I X" 1 = 0 (1) 

xi+' =xi+' (2a)  

XJ+L = $(x; + XJ+') (26) 

xJ+' = XJ - FJ / FJ ,, 

F: = F, (x ;+ ' ,  xi+', . . . , XL?~,  , x;, . . . , x:). 

j = l , 2  ) . . . )  n. 

The iteration equations employed in this procedure are 

J =2 ,3 , .  . . , n 
where 

(3) 

with 

(4) 
It can be seen from the structure of these formulae that there are ( n  ! )2  possible iteration 
schemes, each corresponding to a different iteration sequence of x, associated with a 
different ordering of 5. Each of these schemes will lead to a distinct iteration path. 
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With an arbitrarily chosen initial vector xo, the procedure starts with the search of the 
scheme that yields the smallest norm llFll at XI. Once found, the scheme is adopted 
for subsequent iterations as long as it produces a norm which is smaller than the one 
at the previous iteration point. At the occurrence of increasing 11Fl1, the search for the 
scheme that gives the smallest norm of F is repeated using the iterates of the previous 
stage as the starting vector. 

This algorithm has been extensively tested for two- and three-variable systems and 
found to be reliable and reasonably efficient. For systems with n > 3, however, its 
efficiency is poor since each time a search for the scheme that yields the smallest norm 
of F is required, the computation of llFll has to be repeated ( n ! ) 2  times. It can be 
proved that the (n!) '  iteration schemes of a n-variable system have only n !  ( n  - l ) !  
distinct convergence factors. In other words, each convergence factor is associated 
with n schemes. Therefore the search for the scheme that gives the smallest JJFJJ at 
the next point may be restricted to those n ! ( n  - l)! having distinct convergence factors. 
But n ! ( n  - l)! is still a large number for n > 3. In this paper, we discuss a modification 
of the method to improve the efficiency for large n and this is illustrated by solving a 
non-linear system of n = 5 with several different starting points. 

2. The criterion for scheme selection 

Basically, the algorithm presented in TK consists of two stages to finding a solution 
given an arbitrary starting vector. The first stage involves the application of an iterative 
process until the iterates approach the neighbourhood of the solution where a conver- 
gence factor may be defined. The convergence to the solution in this stage is governed 
by the criterion of decreasing norm. Changes of iterative scheme are often required 
in order to satisfy this criterion. In the second stage, the same iterative process is 
employed. But once a locally convergent scheme has been adopted, the criterion of 
decreasing norm is automatically satisfied in all subsequent iterations and there will 
not be any further change of iteration scheme. In TK we proposed that the iteration 
scheme giving the smallest 11F11 at the next iteration point should be identified and 
adopted for subsequent iterations at the occurrence of increasing norm. The reason 
is that this scheme will give the fastest convergence within the linear region of the 
solution. As pointed out earlier, this scheme selection algorithm requires a lot of 
computing time when n is large. To reduce the time needed for scheme selection, we 
propose to relax the requirement of the choice of scheme based on the minimum llFll 
and substitute it with the less stringent requirement that, whenever a choice of schemes 
is to be made, the one chosen needs only to yield a smaller llFll at the next iteration 
point. The search for such a scheme may be done randomly. Although this might 
increase the number of iterations for reaching the solution, the computing time saved 
in searching for a new scheme is expected to be substantial. 

While it is almost an impossible task to show that such a choice of scheme would 
render the method more efficient generally, a consideration of the probability for 
finding a scheme that gives a smaller llFll at the next iteration point would throw some 
light on this. Within the linear region near a root, an iteration scheme having a 
convergence factor less than one will always yield a smaller IIF1J at the next iteration 
point. In TK, it was shown rigorously that at least two out of the four iteration schemes 
for a two-variable system had convergence factors less than one in the linear region 
near a root. The probability for finding an acceptable scheme in this region is calculated 
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to be 0.65. For three-variable cases, the number of convergent schemes is system 
dependent. We showed in TK that out of 36( =3! x 3!) possible iterative schemes, the 
number of convergent schemes might vary from 6 to 27. The result was obtained from 
computing the convergence factors from 10 000 sets of nine randomly generated 
numbers representing the nine partial derivatives at a root of a three-variable system. 
The corresponding probability for finding a convergent scheme is 0.33. Similar calcula- 
tions for n > 3 can be carried out but require much computer time. It involves either 
solving the secular equation shown in the appendix for the largest root or determining 
whether all its roots lie within the unit hyper-circle with centre at the origin. Several 
approaches (Hammarling 1970) can be used but we employed Schur-Cohn's criterion 
(Marden 1949) in our computation to determine whether a scheme is convergent. The 
probabilities obtained are 0.14 and 0.05 for n = 4 and n = 5 ,  respectively. The results 
of our computations are detailed in table 1 for easy reference. For n = 5 the chance 
of obtaining a convergent scheme is only 1 out of 20 attempts on the average. Thus 
this criterion of scheme selection gives a mean time-reduction factor of 144 (i.e. 
2880/20). 

Table 1. 

n 2 3 4 5 
~ 

Number of possible iteration schemes 4 36 576 14 400 
Number of distinct convergence factors 2 12 144 2 880 
Number of convergent schemes 2-4 6-27 24- 180 290- 1375 
Average number of convergent schemes 2.6 12 81 706 
Probability for finding a convergent 

scheme 0.65 0.33 0.14 0.05 
Number of systems considered - 10 000 5000 200 

In the course of the above study, we also examined the probability of not finding 
any convergent scheme in a subset of n ! schemes obtained from changing the order 
of 5 but keeping the iteration sequence of the variables x, fixed. It was found to be 
zero for n = 3, 0.000 03 for n = 4 and 0.001 for n = 5 .  These results imply that it is 
most likely that the iterative process would lead to finding a solution even if the search 
of schemes is restricted to one of these subsets. Adopting this restriction in the algorithm 
mentioned in TK will reduce the scheme searching time by a factor of n!. However, 
confining the selection of the iteration schemes within this subset will not improve the 
efficiency when the above proposed criterion for choosing the iteration scheme is 
employed. 

3. An example 

As an illustration of the practicality of applying the algorithm to solving a system of 
equations with n > 3, we consider the example of an isothermal irreversible second- 
order constant volume reaction A+ B +. C + D. A solution containing A and B is fed 
into n continuous stirred tank reactors in series with a volumetric flow rate v 1 min-'. 
The volume of each tank reactor is V 1. If the reaction has a velocity constant k 
1 g-' mol-' min-' and the inlet concentrations of A and B are both equal to a,, g mol 1-', 
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then the exit concentration, U,, of A from the j th  reactor satisfies the equation (Carnahan 
and Wilkes 1973): 

( 5 )  2 J = (Vk/U)U, +a, --U,-l = 0. 

For given values of a,,, a,, k and U, the intermediate concentrations U,, a,, . . . , un-l  
and the tank volume V can be obtained from solving the n simultaneous non-linear 
equations defined by ( 5 ) .  For our illustration, we took n = 5 .  Since the algorithm 
requires all the first partial derivatives of J to be non-zero, we solved, instead, the 
following equations to obtain the intermediate concentrations and Vk/ U: 

F l  = f I + f Z + f 3 + f 4 + f 5 = 0  

F2 = f l  -h + f 3  + f 4  + f 5  = 0 

F 3 = f , + f * - f 3 + f 4 + f s = O  ( 6 )  

F4 =fl  + h + f 3  - f 4 + f s  = 0 

FS =fl +f2 + f 3  + f 4  - f S  
With four different initial vectors ( a , ,  a 2 ,  a 3 ,  u4,  Vk/ U )  and taking a, = 2.0 and as = 1.0, 
we obtained the solution (1.677, 1.439, 1.258, 1.115,0.1148) using a Sinclair microcom- 
puter and interpretive BASIC. With each initial vector, the computation was repeated 
40 times and each time a different sequence of random numbers was used for the 
scheme selection process. The average as well as the range of computer time and the 
average number of iterations required to obtain the solution accurate to four significant 
figures for each case are shown in table 2. In the same table, the amount of computer 
time and number of iterations for obtaining the solution with the same accuracy using 
the algorithm given in TK are also included for comparison. In all these computations, 
the selection of iterative schemes was restricted to one of the 5 !  subsets for the reason 
stated in the previous section. The frequency distribution of the time taken for the 
runs using the same initial vector is shown in figure 1. These results show that relaxing 
the scheme selection requirement does make the procedure more efficient. On the 
average, the computer time required to obtain the solution is reduced by a factor of 
3. It is interesting to note that the number of iterations taken to find the solution is 
almost the same for both algorithms. This seems to indicate that outside the linear 
region the selection of the scheme that gives the smallest llFll does not necessarily 

Table 2. 

Modified algorithm Algorithm of TK 

Average time Average number Time Number of 
Initial vector (range) (s)  of iterations (SI iterations 

(500, 100, 300, -400, -200) 1006 60 2899 54 
(396-2490) 

(-300, 100, 500, -200, 400) 1154 61 6870 62 
(523-2591) 

(100, 200, 300, 400, 500) 1042 61 1388 49 
(417-4717) 

(400- 2434) 
(100, -400, 200, -500, -300) 1068 63 1420 63 
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Figure 1. Frequency distribution of the time taken for convergence to the solution for 
different starting vectors. ( (a )  (500, 100, 300, -400, -200); ( b )  (-300, 100, 500, -200, 
400); ( c )  (100,200,300,400, 500); ( d )  (100, -400,200, -500, -300)). The arrow indicates 
the time required using the algorithm of TK. 

lead to a shorter path towards a solution. In the computations using the modified 
algorithm, we also monitored the average numbers of schemes tested before an accep- 
table one was encountered. The result found was 40. This is twice the expected average 
value obtained in 9 2. 

4. Remarks 

The approach presented here and in TK differs entirely from that of modified Newton 
methods (Dennis and Schnabel 1983). In the latter techniques, a subsequent iterate 
is obtained with an adjustable step size along a descent direction of a model function. 
On the other hand, our algorithm involves mainly a search for a descent path from a 
finite set of iterative schemes. 

The existence of a local minimum near an iterate poses a problem for all descent 
methods as it tends to restrict the domain of global convergence. This problem can 
be overcome in our method as described in TK. 

The modified Newton methods have the advantage that they are quadratically 
convergent whereas our algorithms exhibit only linear convergence. However, each 
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basic iterative step of our algorithm is simple; it only requires evaluating n times a 
variation of the one-dimensional Newton-Raphson formula. 
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Appendix 

The elements of the (n - 1) x ( n  - 1) matrix S in the secular equation det(S - al) = 0 
(TK, equation ( 4 . 5 ) )  can be calculated from the formula 

MJ,k = f(M:.k + a , , k )  j , k = 2 , 3  , . . . ,  n 
where 

with 

j < k  
j z k  s j < k  = 

M:,k=-FI ,k /Fl , I  * 

The secular equation has ( n  - 1) roots and the largest one is the convergence factor. 
Schur-Cohn’s criterion allows the determination of whether the absolute values of all 
the roots are less than one without solving the secular equation. 
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